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Al)strac.t

IL is believed that most quasars and galaxies ])rcsc]lt  two c.omIIIoIl  features: the I)rcscllcc
in their core of a supwnassivc ol)jcct,  alId L1112 mpcricnc.c  of one or ]norc c}lcouaters  witl)
other galaxies. la this scenario, it is likely  that a Substalltia]  fraction of active galactic.
nuclei harbour a supcrmrmivc  binary, fueled by an acc.ret ion disk. ‘Ilcsc binaries would
certainly be a)noag tllc stroagcst  sources of Si]lusoiclal  gravitational waves. J$TC  investigate
their evolutiotl  considcrillg,  simultallcous]y,  tlIc accrc(ioll  of (lIC black IIolc’s  masses  fro)n
t}lc disk, and the gravitational waves emitted during tlIc orl)ital  motio]l,  We also comidcr
otllcr  astropllysica]  scenarios involving a coalescing  Linary with IIOn constant, ]nasses.

“ l;-]  l)ail:  gxgC?grotlcl]  .jl)l.l]asa. go\’



1 Introduction

Soon after  the discovery of tllc astrophysical phenomena subscqumltly  i]ldicated

with the IIamc of Active G’ulaciic  iVuclci  (AGN),  it was argued  that their power

su])ply was ultilna,te]y  gravitational iq ori,gill. If this is the con~lnon  feature of the

wide range of models included ill tllc AGN category, then the natural conclusion

is, as first poi]lted  out by Zeldovic.li  &. h’ovikov  (1964) and Sall)eter  (1964), tliat all

AGN ‘prime mover’ is a supcrmassive  black hole (S1]11). AInOIIg other compelling

argumellts  in favour of the black hole hypothesis are their efficiency and stability,

together with various observational discoveries, like rapid X-ray variability, small

scale radio jets, broad emission li]les,  etc. (Il]andford  1990; Osterbrock  1993).

l’or these reasoILs, xnost of tllc theoretical work about the AGN phexlolnenon

has been focused on the SIIH hypothesis, ]Iamely  that essentially all active galaxies

contain  w 106-- 109 MO black holes in their nuclei, and that these objects, together

with their orbiting accretion disks, are the ]Jrirne movers for most of the powerful

activity.

On the other hand, there are also cox[lpel]ing  reasons to believe that a great

number of galaxies have undergone at least one merger since the epoch of their

formation (see Recs 1990, and references therein). ]ndecd,  many current models

assume that the central object is activate, or simply refueled, as a result of these

interactions with another galaxy (Osterbrock  1993), ‘1’his  new evidence, along with

the central SBH hypothesis, suggests that, due to the dynamical friction exerted

by the surrounding environr[lent,  a certain llulnber of active galaxies could harbour

a binary black hole system (111111 S), with sc~)aratio]l of the order of parsecs. g’his

conclusion is supported by the observed bezlding and apparent precessioll of radio

jets emerging from AGN (}legel]nall, Blandford,  & Rees 1980), In fact, the S-

sylnmetry  observed in many radio sources a]ld in a considerable fraction of quasars

at z < 1 (Ilutchings,  l’rice, & Gowrer  19S8) might be due to the presence of such

Liliaries.  IIowever,  ill ]na]ly quasars  tile jots are stro]lgly  curvec] OJI the lnilliarcsec
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scale as well.  If this curvature is also due to precession, much shorter precession

periods, and thus smaller binary separations, are required. This indicates that mass

flow into the galactic nucleus through the accretion disk dominates not only the

activity, hut  also the evolution of the central systeln (Roos 1989).

Moving from these considerations, recent works liave investigated the evolution

of a 1111]1S  in the violently relaxed core of a merged galaxy, taking into account the

flow of gas and stars into the newly formed nucleus (Begelman  et al, 1980; Roos

1989; Ebisuzaki,  Makino, & Okumura  1991; I’ukushige,  Ebisuzaki,  & Makino 1992).

These AGN models are interesting per se, and also in conjunction with the issue

of gravitational waves (C; W) detection. In fact, close binary systems of supermassive

compact objects are currently considered as the most certain observable sources for

detectors like LIGO (Abramovici  et al. 1992)  and VIRGO (Flradaschia  et al. 1990),

and also for those experiments based on the IIoppler  tracking of an interplanetary

spacecraft (see, e.g., Thorne  & llraginsky  1976; Park & Vishniac  1991; Ilertotti  et

al. 1992). In the standard model for the emission of GW from a binary system, the

energy loss is ~Jroportional  to the square of the third derivative of the quadruple

moment. ‘l’his description, however, does not take into account other energy loss

mechanism, due for example to the interaction with an accretion disk.

In this work, we analyze the evolution of a lIBHS when the effects of mass

accretion and GW emission are considered simultaneously. In \2 we will describe in

detail a single BIJ1l  S, and find, under so]ne reasonable assumptions, the behavior

of the separation between the two compo])ents. in $3 we show how the detection

of these waves could provide some useful information on the physical characteristic

of the AGN, namely its mass and accretio]l rate. in ~4 we extend our analysis to a

simple population of 111]11S systems, and fi]ld the evolution law for the distribution

function, We conclude, in ~5, pointing out other astrophysical situations in which

a relevant mass change can affect tile evolution of the binary  system, and thus also

the waveform of the emitted GW.
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2

‘l’he

Evolution of a binary system in presence of mass
accretion

evolution of a close binary system in presence of mass loss or gain has been

thoroughly analyzed in

and secular changes in

latera similar analysis

tllc past, for example as a tool to explain the irregularities

some spectroscopic binary stars (Kruszewski  1966), Only

has been al)plied to relativistic objects, like a neutron star

binary  (Clark  &l;ardley 1977; Jaranowsky  &Krolak  1992).

We conside] a binary system consisting of two supermassive  black holes, fol-

lowing circular newtonian  orbits around the common center of mass, This system,

according to General Relativity, radiates gravitational waves, which subtract energy

and orbital angular rnomentu]n  from the system itself. q’he effect of this radiation

is also to circularize the orbit. l’or this reaso]~  we have assumed the orbits to be cir-

cular. Also the frictional drag exerted by the surrounding gas and stars during the

formation and early evolutionary stage of the llHHS should circularize the orbits,

even if this point  is still controversial (Begclman  et al, 1980; Fukushige et al, 1992).

~’he angular momentum carried away by the GW in the unit of time is given by

the quadruple formula (Peters 1964), which for point masses reads (units c = G = 1

hereafter)

dJGW 32 /i2M~—. —.. == —.. — —
(it 5 ~7/2 ‘

(1)

where a is the separation between the 1111s, MT = ml + 7 n2 is the total mass, and

p = ?lllmz/kf~ is the reduced mass of the syste~[l.

When we ccmsider such a systeln in the core of an AGN, we must also take into

account the effect of the accretion clisk, ‘1’his material, made up of gas, stars or even

more exotic objects, like ordinary black holes,  is able to transfer or subtract energy

a]ld orbital angular mome]ltum  to/fro]n  tile 111111S (Kandrup  & Mahon 1992).

We will assume that the disk lies o]] t}le  orbital plane, and that the mass falls

radially with respect to the center of mass of the bil~ary  (i.e. without any velocity
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component tangential to the 1111s orbits). hloreover, we neglect any frictional or

gravitationa~  effect exerted by the disk on the DLIIIS, as well as the intrinsic angular

momentum (spin) of the UHS.

l’orgettin.g  for a moment the GW effect, according to Newton’s law we have, for

each body (i = 1)2),

(2)

where the dot denotes derivative with respect to time, J_,N is the gravitational force,

and ii is the velocity of the accreting  mass. q’he vector product of equation (2) with

F’i gives the conservation equation for the total angular momentum

(3)

Thus, since we are assuming that F’i and ~ are (anti) parallel, the orbital angular

momentum is conserved during accretion. “raking now into account the angular

momentum carried away by the GW (see eq. (1 )), we can write

(4)

l’or silnp]icity,  we will assume, from now on, that the two BHs have the same mass,

m. l’hen,  substituting equation (1) in equation (4), one gets the following equation

governing the separation a

a=-”? (:):’ --3(ili1 (5)

in order to integrate equation (5) wc should have to know the time depe.ndencc  of ?h.

Unfortunately, while we can make some reasonable hypothesis on the magnitude of

rh, based on the l;ddington  assumption (see later), very little earl be said about the

real time dependence of Tit, as well  as the duration of the active phases. l)ue  to our
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ignorance on this subject, we will make the very simple assumption 7;1 = v == CIMM.

Then, integrating equation (5)ancl  takingt  = Oasthei]litial  time, one gets

( :,)[(’+%;)(’++) -’’-3;]”4 “)a(~) = CIO J +

where we have introduced the two fundanlclltal  time scales

and

(7)

5 cl:
Tg E — - - - —  .

512 771;
(8)

‘The meaning of these two quantities is as follows: ~~ gives the mass e-folding time

for accretion at the rate v, while T9 gives the time required by the binary to coalesce

as a consequence of the energy and angular moment urn carried away by the G W,

assuming circular orbits and v = O. For a very slow accretion rate, i.e. for TnL >> Tg,

the time evolution of a k dominated primarily by GW emission, and equation (6)

reduces in this limit to the well known formula (Misner,  ‘J’borne, & Wheeler 1973)

()t
1/4

a(t) == flo 1 - -- .
Tg

(9)

l’rom equation (6), we can easily find tllc coalesci]]g time, i.e. the time at whit]]

a vanishes,

(10)

]n the ]imit  ~n, > Tg, by expanding equatioll (10) in powers of Tg/T,,,,  to first order



we get

(11)

Figure  1 shows the value of T. as a function of ~~, in units ~~ = 1. As expected, the

mass accretion speeds up the evolution fo the system. In particular, if the two time

scales are almost equal, then the coalescing time is approximately 2070 of ~g.

‘1’he  crucial quantity which appears in equations (6) and (10) is thus the ratio

T9— H3X lo6m;4
T,,, (i?i)’(iib)  ~

(12)

where ~s is the initial mass in units of 108Af@, For values of m and m typical of

AGN models, this ratio is usually bigger than one, unless one is willing to adopt

extremely small separations. ‘i’his  fact is of considerable importance, because we are

forced to abandon the usual idealized description, based on equations (8) and (9), in

fa.vour  of the more general equations (6) and (10). On the other hand, the quantity

givcll  in equatic)n  (12) can not be arbitrarily large, IIL the standard accreting  ]nodel,

the total radiated power is assumed to be limited by the Eddington  luminosity

],fi; ? 2.6 X 104671}6 erg S-] . (13)

III principle, this limit only applies for

els actually gives L << I,I; (Chang  &.

valid arguments suggest that this limit

spherical accretion, when most of the mod-

Ostriker  1985; Park & Ostriker  1989), but

remains valid in every realistic (i.e. without

an unnatural segregation between radiation and fuel, see Turner 1991 ) anisotropic

model, which generally gives L % l,~; (Rem 1984).

Associated with l,I; is an Nddington  accretion rate, that would be able to sustain

an l’;ddington  luminosity with efficiency  [ for conversion of mass i]Lto radiant e]ler,gy
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Equation (14) gives a lower limit for the e-folding time

T}/,’  E4.4 X 108( .yr, (15)

which is independent of the mass. Note tliat  equation (14) implies an exponential

growth of the mass and its derivative, in contradiction with our hypothesis ?n =

const. Nonetheless, since we are implicitly assuming that we observe the AGN for

a time 71<< Tn,, during which the r.h.s.  of equation (14) can he assumed constant,

wc will consider the Eddington  values (14) and (15) as upper (lower) limits for m

and T~~ ~ respectively. q’hus, the ratio in eqllation  (12) is bounded from above by the

quantity

T9 7X10 5 Uo  4 _~

( )
— * —.. - ------ ---- .—- n18 .
r~; 6 1 pc

(16)

Some comments should refer to the unknown physical parameter c, which describes

the radiative efilciency.  A detailed review of this aspect has been given by ‘.’urner

(1991 ), in the attempt of accounting for the masses and luminosities of the oldest

quasars  (z > 4). From his considerations, one can adopt the reasonable value

c = ().], independently of the details which perturb the fuel reservoir quite far from

the inner giant object.

l’ina]ly,  another useful quantity is the critical separation, a., defined as the initial

separation which gives coalescence after a certain time t. From equation (10), this

is given by

acw={~yq[l, +,]}]”. (17)

]n using equation (17),  we must remember that the origin of time was taken at the

instant of formation of the binary. ‘1’his quantity is of particular importance when

one is looking for the GW bursts resulting form the final coalescence, since the

probability of these events depcmds on the percentage of systems which formed with
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separation around a.(i~b.q).

3 The Braking Index

,

I

]n the previous section we have calculated the decreasing of the separation a as a

consecluence  of the emission of GW and the accretion of mass. Since the frccluency

of the waves is twice the orbital angular frequency, the ~let effect of their emission

is an increase of their own frequency. If the masses are constant, then a is governed

by equation (9), and from Kepler’s third law one finds

()
-3/8

f(t) = j-o 1-- :j . (18)

however, in our case the situation is not SC) simple, since now the total mass is

increasing, and a(t) is given by the more complicate equation (6), !l’he overall effect

is, thus, a more rapid increase of j(t). l’his fact can have considerable importance

in relation to GW detection experiments. In fact, a gravitational train emitted by

a binary systexn  is detectable as a pure sinusoid only if the frequency remains in

the same resolution bin during the observations, i.e. as long as ~T S Af s 1/1’,

where 7’ is the duration of the experime]lt. ‘l’his constraint has been sometimes

overlooked, in the past, since it implies that the spectral region where the signal  can

be scare.hed for must be consistently restricted (Giampieri  & ~’into 1993).

In order to describe the time evolution of j(t), wc take  into account also its

derivatives ~ and j. In particular, the quantity of interest is the braking imfcx

Now, Kepler’s third law and equation (6) give

(19)

(20)
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l)eriving  again equation (20) with respect to f, and neglecting the see.ond order

terms in the nondimensional quantity v(nntj)’  8/3, we eventually find

(21)

where ~ is a lmmerical  coefficient given by /3 m 0.77. ~’he value k = 11 /3, corre-

sponding  to the limit case v = O, is the col!stant  value of the braking index when

one consider GW alone, as one call  easily check from equation (1 8). If we were able

to detect a sinusoidal GW at the frequency ~ emitted by a IIBHS, then measuri]lg

k one could determine the interesting quantity vrn ’813, Figure 2 shows this result

when v is assumed to be equal to the F,ddington limit (see eq. (14)), with c = 0.1.

Given the GW frequency j, or, equivalently, the orbital period ~ = 2/~, and the

deviation Ak from the general relativistic value 11/3, one can determine the mass

of the system. Alternatively, if the mass is known, one can get relevant  information

on v, as shown in Figure 3.

‘1’o be more useful, this method ought to be extended to more realistic situa-

tions, where, for example, mass transfer between the two components occurs. in

other words, we would like to drop the silllplifying  assumptions of equal masses

and constant accretion rates, and find the expression of k which generalizes equa-

tion (21). This request can be easily fulfilled, since to obtain equation (21) we have

not ?nacle  any use of the solution (6) for a(t); all we need is an expression for i in

terms of a itself, p, &fl and their derivatives ~L, A~7,. From the adiabatic invariant

011~ finds

while equation (1) gives

()u 64 phq. — . -.— -----.
a9 5 a4

(22)

(23)



Substituting equations (22) and (23) in equation (20), we obtain,

of order 0(?it/m)2  and O(iiL/m),

neglecting terms

(24)

which reduces to equation (21) wIIc]l m] = m2 and ~it = co7zst. l’roln equation (24)

wc see that k, in the general case, can assume values above and below the reference

value 11 /3, according to the sign of the term between parentheses in the last equa-

tion. For example, if some material is flowing from one 1111 (call it component ‘1’)

to the other one (component ‘2’), then

jl = ‘iL’(’’’’G:37 (25)

J)7 = 0. (26)

q’bus, k is bigger (lower) than 11/3 if and only if ml is less (more) massive than nz2,

‘1’he  mass transfer has, in practical, no effect on k as long as ml N m2. Moreover,

we stress the possibility that a single BBIIS could exploit different behaviors of IL

and MT during its evolution. Ikom the observational point of view, this fact gives

rise to a dispersion of the measured values of k, depending on which of the various

possible effects, namely mass loss- transfer-accretion, is dominant on each particular

system at that particular time. Thus, measuring k in a wide population of BBHS,

one can get very interesting information 011 the variability of these systems, which

seems to be an important step toward the u]lderstanding  of the fuel mechanisms.

4 Evolutionary effects

l’ollowing  the discussion concluding tllc l)revious  section, we will now consider a

population of lJII}IS. Independently of their formation epoch and mechanism, we will

start

by a

considm-ing  them at a given ‘initial’ time to, when each of them is characterized

separation ao. For simplicity, we will assume that mo ant] v are equal in all

10



these systems, and focus our attention on the evolution of a. in particular, we want

to find the distribution function, i.e. the function which gives the number of systems

with a given separation a, at an observation time t, given the same distribution at

the initial time to. 1’o be more specific, we define the number of BHHS with initial

separation between ao and ao+ duo  as go(ao)dao/ao, with ao belonging to the interval

[aIllilll  a,I,8X]. ‘lThe lower limit a,,,i,, can be considered as the minimum separation

compatible with our newtonian assumption (for Post- New’tonian corrections to the

binary orbit see Lincoln & Will 1990), while the upper limit a,,,aX is determined by

the sensitivity and the bandwidth of the receiver.

We want to find how go evolves with time. At a given time t, the binary systems

with a. < aC(i)  have disappeared, while those with a > aC(i)  are distributed in

accordance wit]] the number  conservation law, i.e.

duo
g(a, i)~ = go(ao)~, (27)

where a is related to a. by equation (6). Differentiating equation (6) we thus find

g(a, t) = go(ao)
(:)4 (’+312 ~
~~

G\V D I S K

(28)

In equation (28),  we have made explicit the origin of the multiplicative factors. in

fact, the term (a/ao)4  is typically due to the emission of GW alone, as can be seen

differentiating equation (9) (I]ond & Carr 1984). Note, however, that in our case the

relationship between a and a. is not the same as in the ‘unperturbed’ equation (9).

in other words, the factorization in equation (28) is only apparent, since TW, appears

also, through equation (6), in the term indicated with ‘G W’. F,quation (28) can b~

rewritten as

g(a, i) = go(ao)l’(uo, t) , (29)
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with the introduction ofthc transfer function .F(ao, t), given explicitly by

(30)

Note that this quantity is always less than one, and depends on a. only through the

GW time  scale T9. Since T~ IX a:, this means that the evolution is much faster  near

(1 Inith than near a,,,mx. l’igur-e  4 gives an example of this behavior. Note also t]lat, as

expected, J’(aC(t), i) = O.

5 Conclusions

In this work we have considered the effect of an accretion disk on the GW emission

from a BUHS, The  main result is equation (6), which gives the evolution of the

separation a as due to the GW emission together with a (constant) mass accretion.

We have found that the coalescing time call  be considerably shorter when the mass

increases at the F,ddington rate. l’inally,  wc gave an approximate expression for the

braking index, in terms of the reduced and total masses of the system.

We stress that most of the results presented here have been obtained under

quite general assuxnptiolls. ‘lherefore,  they can be applied also in other interesting

astrophysical objects, like a binary  pulsar, etc.. l’or example, we can consider a

stellar binary system, loosing its mass adiabatically. ‘J’hen,  assuming again cclual

masses and ?iz = corzst.  (Tw, < 0 in this cas~),  wc find that a evolves according to

the same equation (6).

III some circumstances, however, the adiabatic hypothesis could appear inadeq-

uate. In this case, equation (6) is no longer valid. A1)yway, we are able to re])lace

it, as long as the fractional change ill t}lc  bindillg  energy due to the stationary lnass

10SS is proportional to the fractional cllallgc of the mass itself, i.e.

($1; (5 III——.
1’;

~@_ .-,
?)1

(31)
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I’his  case includes the previous olie, since the adiabatic law corresponds  to a = 5,

as well as other important cases; for exanlplc,  Jeans’s mode of mass ejection implies

a = 3 (Iiuang 1963).

g’he]t equation (5) lnust be rcplaccd by

()128 m 3

a=. — —
5 a )

-- (a -2) (: ,;, ,

which can be easily  integrated, to give

() 2-@
a=ao 1+-~- l’:(q’lq ,

Tnl

(32)

(33)

where

[ ()l–~ln l+-:-
Tg T,,,

Correspondingly, the coalescing tilne (1 O) becomes

Cy=l

I ( 4(cl –  l)T ‘/4(~-*)
1 + —---—---9

)
– 1

T,r,
a+]

7C = T,,t .

c!xp(Tg/T,,L)  - 1

When lTm,l > T~, equation (35) gives

[

2

( )]
T, = Tg ~ -1 3-:5ffi  -r’ q - + O ‘g-

? 7 r, Tm

1+’rom equation (36) we deduce that

Cy =. 1

(35)

(36)



q’hese formula could be encounterecl, fc~r example, in a type 1 Supernova progen-

itor, according to the Double IIegenerate  White Dwarfs (DDWD)  model (Iben &

q’utukov  ]984). In this model, both W])  loose their 11-rich envelope just before the

filla~ coalescence. in the usual description c]f the I) I)W1) ltlodcl the GW elnission  is

considered only as a mechanisln  capable to get the binary close enough for the com -

~non envelope phase (or phases) to occur, q’his  idealized mode], ili which the various

phenomena, namely the mass transfer and ejection, and the final coalesce~lce,  take

place with different time scales, is obviously justified by the intention of giving a

satisfying description of the SNI progenitor. IIowever,  from the results of our work,

we can conclude that all these effects can be taken into account simultaneously, and

t}lat they can ha,vc considerable influence on the observability of this kind of sources.
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Figure Captions

Figure  1

‘J’he coalescing time, TC, as a function of tile mass c-folding tilne, Tnl. IIotll quantities are

cxprcsscd in uuits of the GW tiInc scale’, Tg.

Figure 2

1 1OW to determine the mass of the binary, kllowillg the GW frequency j and the braking

index k, exIJrcsse.d  here in tcr]ns of tl~e deviation fro~n the Glt  ~wluc 11 /3, \\’c have assulned

an efficiency c == 0.1.

Figure  3

1 1OW to determine the c~cicncy  c, for a 1]11 ][lass  of 108 M@, from the knowledge of the G\V

frequcmcy  J and the braking indm k. As ill fIg,2,  Ak = 11/3 -- k.

Figure 4

‘J’hc evolution c)f the distribution function g(ao) at a gmeric time t. IIillarics w’itli  a“ < Oc(t.)

have clisappearccl.  ‘1’hose  with an initial separation larger thal~ at(t) liave evolved according

to equation (4.3). I’he initial clistribution {IO is assumed to be flat over  tllc iliterval [0, a~,,ax]

(dot-dashed line).
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